ROTOTEST TO ELOTEST M6: MR6 ROTOR, ADVANCED BOLTHOLE INSPECTION WITH LAYER DETECTION 2025 NDT Forum, Airlines for America Dr. Aschwin Gopalan, Head of Development Dietmar Griem, President Rohmann GmbH Rohmann LLC

Overview

What to expect

- Why Bolthole inspection?
- Back in Time: Bolthole inspection with the ROTOTEST
- The new MR6 Minirotor
 - drive concept
 - LED: illumination and signalling
 - optional depth scale
- Layer Detection
 - Use cases
 - New Sensors?
 - Limitations

WHY BOLTHOLE INSPECTION?

It is not an easy task!

Why Bolthole inspection?

It's not an easy task

- Aircraft structures are subject to many heavy load cycles
- The holes used for the fasteners are very often starting points for cracks
- Fasteners are used to connect several layers of materials such as
 - At the lap joint: Skin panels, doubler, stringer/frame
 - Stringer and frames
 - Using bolts, rivets, Hi-Loks
 - Layes with same or different materials
- Small cracks originating from inner layers can not be detected from the surface
- Cracks hidden under the fastener's head can not be detected from the surface

How is it done?

It's not an easy task

- Time consuming and expensive
- Normally done during C and D checks
- Fasteners need to be removed
- Rotating eddy current probe is inserted in hole to scan the ID
- Cracks need to be reported and assessed

When a crack is found

What needs to be done?

- Specified in the manufacturer
 Structural Repair Manual (SRM) or a specific Airworthyness Directive (AD)
- Depending on position and crack length:
 - Reaming and oversize fastener/bushing
 - Stop drilling
 - Reinforcement
 - Part replacement

BACK IN TIME

Where it all began: The ROTOTEST

How it began

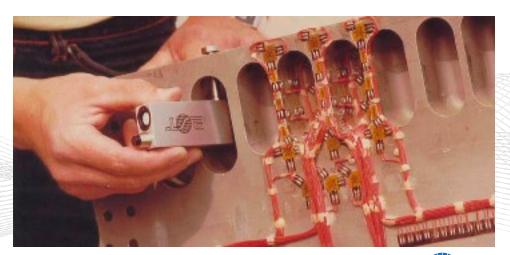
Rotating the Probe

- From the 1960s, general purpose eddy current instruments where used for rotary inspections
- Rotary Scanners were used with Instruments like the Hocking D4/D5
- First procedures and technical orders where written

Back to 1977 (yes, that long ago)

Birth of the ROTOTEST B500

- Rohmann GmbH in Germany was founded in 1977 in the basement of Jürgen and Ines Rohmann's home
- In the same year, the first product was released: The ROTOTEST B500
- The first dedicted instrument for rotary inspection
- The first portable and battery operated eddy current device
- The name ROTOTEST was soon widely used for this type of inspection



Rotors (or Scanners if you like)

Rotating the sensor and getting the signals

- First rotating sensor assembly probably by MAC or Förster as early as 1959 for long products
- First handheld rotor by Förster, mains operated in the housing of a power drill
- First commercially available dedicated handheld rotor by Rohmann in 1977: The SR1 (Standard Rotor 1)
- Much smaller version MiniRotor MR3 in 1981
- MR3 design has be copied numerous times with compatible sensor interfaces
- Even smaller Submini Rotor SMR4 by Rohmann in 1985, also copied by many manufacturers for working in tight spaces

THE MR6 MINIROTOR

Perfect compagnion for the ELTOTEST M6

The MR6 Minirotor

The perfect companion for the ELTOTEST M6 handheld instrument

- Same form factor as the Minirotor MR3
- Additional receiver channel (one driver, two receiver channels) dedicated to Layer Boundary Detection
- Brushless DC Motor with integrated controller for less power consumption, better low speed performance (torque) an increased durability
- Available as MF (Medium Frequency) and HF (High Frequency) versions
- New 16 Pin Fisher connector to connect to the ELOTEST M6 for single cable operation with depth gauge

The MR6 Minirotor

The perfect companion for the ELTOTEST M6 handheld instrument

- Same form factor as the Minirotor MR3
- Additional receiver channel (one driver, two receiver channels) dedicated to Layer Boundary Detection
- Brushless DC Motor with integrated controller for less power consumption, better low speed performance (torque) an increased durability
- Available as MF (Medium Frequency) and HF (High Frequency) versions
- New 16 Pin Fisher connector to connect to the ELOTEST M6 for single cable operation with depth gauge
- Compatible with all standard RSM probes (Rohmann and third party)

Depth gauge

Can be attached to both rotors

Magnetic reading head integrated in rotor

Depth gauge

Tolless attachment

- Magnetic reading head integrated in rotor
- Magnetic sliding scale can be attached
- Different gauge heads can be used
- Resolution 0.05mm
- Available in different length versions matched to sensor length
- Ajdustable and changeable head
- Scaled CSCANS with the ELTOTEST M6

Programmable SoftButton

Start/Stop recording or other function

Software configurable function in the ELOTEST M6

Default: Start/Stop Recording

Default: Auto clear when Starting

RGB/W LED

Illumination and Status

- Auto On with Rotation
- Illuminates Workpiece
- Changes Color with M6 Status LED

LAYER DETCTION

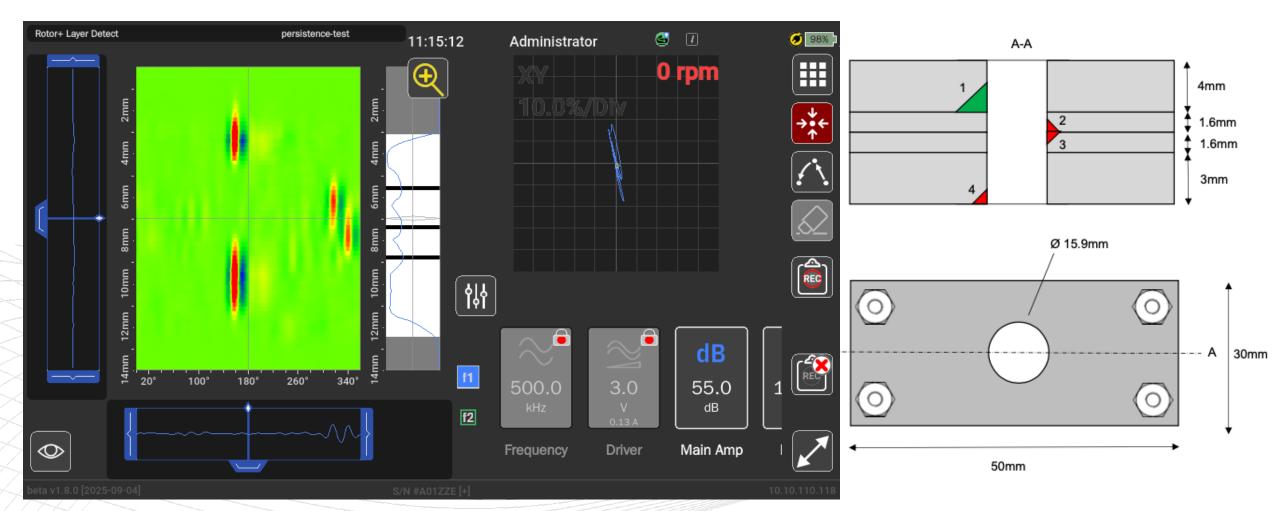
Knowing where the defect is

Layer Boundary Detection: Why?

Important information

- Important information for structural repair
- Small defects might for example be acceptable in the doubler but not in the stringer
- Even with depth gauge, it might be difficult to see wether a defect is on the bottom of layer 2 or on the top of layer 3
- Feature requested directly from aircraft manufacturer
- Problem: the normally used differential sensors can not be used to reliably detect the layer boundaries (wrong orientation)
- First solution: additional absolute sensor element
 - Would require to replace all existing sensors with new ones
 - Would not be compatible with existing sensors
 - Limited space in smaller diameter sensors could make it imposssible to mount additional coil

Advanced Rotary Layer Detection Mode


For the ELOTEST M6

- CScan (Timebase or Encoder/Depth gauge) for defect channel
- Absolute Channel for layer detection uses driver coil as parametric absolute sensor
 - Works with all legacy RSM probes, Rohmann or third party
- Detects Specimen Boundary (part surfaces)
- Detects Layer Stack Boundaries
- Works for same and mixed material stacks
- Balance in Air needed!

Advanced Rotary Layer Detection Mode

Will be available in Software Version 1.8

ROHMANN GMBH – ROHMANN LLC

Thank you for your attention!

