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o)l BONAed structures

* Sandwich panels and thick-section composites
* Two face skins and a core (foam, balsa & honeycomb)
* Uses: Aircraft interiors/exteriors, boats, wind turbines

* Defects (manufacturing or in-service)
« Compromise structural integrity
* Increases risk of failure

* Therefore, testing is required




=) NDT Of bonded structures

* These type of structures have posed a challenged for many
years

* Conventional NDT methods struggle
* UT: high attenuation & scattering, complex signals from internal
geometry, couplant
 ECT: can’t be used on non-metallic parts, relatively shallow
penetration

* Thermography and Radiography: difficult to implement,
expensive, have challenges and limitations

* Bond-testing NDT methods mitigates some of these issues
* |In most cases, no couplantis needed
* Experiences far less attenuation
* Signal are easy to interpret




=l | N€ BONdCheck

* Multi-mode bond testing instrument
* Pitch-catch
* Resonance
* MIA (Mechanical Impedance)

* They work by exciting the structure and .
capturing the vibration response locally "Two panes” view

& %o =

MIA probe Resonance probe Pitch-catch probe
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Current methodology

* What is the current methodology?

* Bond testing, like all NDT methods, has
inherent limitations

* Sensitivity decreases when calibration is
based on a single defect

* Single-frequency, short-pulse excitation
* limits depth sensitivity
* limits capability to fully characterize defects

* Most sensitive to large, shallow defects

* Cantheseissues be mitigated?

-

8 kHz excitation
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Motivation

. '(I]'Iher?] IS a need to improve sensitivity to defects of varying sizes and
ept

* There is a lack of ability to characterise defects reliably (including
depth information), using low-frequency inspection techniques

* There is a need for a relatively inexpensive and easy-to-implement
method, not requiring trained inspectors (automation)

These can be achieved by:

* Implementing excitation techniques and advanced data analysis to
Improve sensitivity and detection capability

* The application of machine learning and statistical analysis to drive
automation and improve predictive performance (classification).
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Methodology

* Chirp excitation (5-30 kHz)
* Improve sensitivity to a range of defects

* Improve sensitivity to deep defects by exciting
through-thickness resonance & harmonics

e Capture a full spectrum of information

* Frequency-domain analysis on this data
allows for:

* Automated detection (for various defect sizes &
depths)

e Automated characterisation and classification of
defects
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Demonstrator
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Nomex honeycomb
sandwich panel

The panel has a range of
artificially manufactured
defects

The panelis scanned in
increments of 3mm

The response is monitored
and captured with a
computer interface

Scans are performed for the
near-side & far-side for
comparison
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C-scan plots

Near-side scan Far-side scan
* Visualised the
amplitude response
as a fu nctlon Of the CScan(Proc Amp]@1150kHz CScan(Proc Amp]@1150kHz <10
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Detection methodologies

[Contrast frequency method (baseline)

* Emulates current industry
practice for bond testing

* Requires calibration for
optimal performance

* Typically a single-
frequency excitation

* Detectionis frequency-
dependent

RMSD algorithm ]

Machine
learning
(anomaly
detection)

Integrates information from
multiple frequencies

* No prior calibration or

knowledge of the structure
iIs needed

Detection is not frequency
dependent

Can be fully automated

Integrates information from
multiple frequencies

Can learn form a host of
spectral features
simultaneously (amplitude,
phase, band power, frequency
shifts, etc)

Can be automated after initial
training
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Method 1: Contrast frequency method

(baseline)

Contrast frequency method (baseline)
* Emulates current industry practice
* Inspection sensitivity is calibrated to a single defect

First, an optimal frequency for inspection is
chosen by the operator, using a calibration
specimen

Then, a score is calculated for each pixel. This is
done by normalizing its response at the chosen
frequency against the mean response of a user-
selected pristine region.

A score map is generated for the entire panel
using these calculated scores.

A threshold corresponding to 90% POD of the
user-selected defect is used to produce a binary
detection mask

Amplitude

fopt = arg m}gx

Aqs(f)

Amplitude

Ap(f)

fopt = argmax|a(f) = ()| Phase

Mean Amplitude Spectra

Amplitude Contrast in Analysis Band
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«w=m)] Method 2: RSMD algorithm

Ny
1
» RMS deviation (RSMD) algorithm for RSMD(x,y) = @Z(ﬂxov,ﬁ)—M(ﬁ))
automated detection i=1

2

e pe . . Amplitude RMSD Map
* Quantifies the deviation from a Freq:12.0-19.0 kHz

reference signal (in this case the
median of the responses) across a 400
spectrum of frequencies

1.5

Y(mm)

200

0.5

* Selection of the reference signal is
automated

Frequency (kHz)

* Plots the pixel-by-pixel output as a 2D
spatial score map

Detected

3
* By applying a threshold of the 90" s - o
percentile value from all values in the i

score map, we can binarize the output o I8

into a mask




=)l Method 3: Machine learning

_A() .
R4(f) = Aref(f) T e Amplitude
* MLis usedto implement automated anomaly detection -
R(;b(f) = ¢(f) - d)ref(f) Phase
* Establish a reference median spectrum from pristine data Aref(f)

Quantify the deviation of each pixel’s spectrum from this reference

Anomaly Score Map

An Isolation Forest model is then trained on a collection of these
residual spectra that are known to be pristine

To generate the score map, an anomaly score is assigned to each
spectrum, by the trained model

A high anomaly score signifies an anomaly

400

Detected

A 90™ percentile threshold value of the score map is used to
binarize the output in a mask

= 200

Background

200 400
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ML Workflow:

Defect-free training
data

Probability

Pristine

Operation:

Chose suitable ML model
(Decision trees or Neural nhetworks)

Isolation forest

New measurement

Amplitude

Phase

Engineered features

Trained network or tree
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Anomaly detection workflow & operation

Train the network or tree

Prediction

Evaluate
performance

Update model parameters
and/or training data

Normal (defect-
free)

Anomaly

Automated detection is based
on a 90" percentile threshold
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Establishing the ground truth

* The ground truth mask is a summary of what is detectible

* Detectionis defined as any defect with a PFA of less than
40%, when it’s excited at resonance

* Meaning itis distinguishable from the background noise

* Using this logic, 14 of 23 known defects are detectible using
the amplitude information

* The ground truth mask is a reference, used to evaluate the
performance of the proposed detection methods

Ground Truth

05
. 400

Defective
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= 200
>

Pristine

0 200 400
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CF (Local Cal.)

ScoreMap(Amp. Ratio at 15.0kHz) Global POD: 0.37. PFA: 0.00
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Freq:12.0-19.0 kHz Global POD: 0.80, PFA: 0.01

Detected

Background

0 200 400

X(mm)
X(mm)
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Comparison at 90% POD & percentile

CF Method: A threshold is established based on a 90%
Probability of Detection (POD) for defective pixels from a user-
selected defect, creating a binary detection mask

RMSD & ML Anomaly Detection: The score maps are
threskholded at the 90" percentile to create a binary detection
mas

Performance Evaluation: The resulting sensitivity maps are
compared to ground truth data to measure performance.
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Far-side comparison

ScoreMap(Amp. Ratio at 14.8kHz)
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3
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>
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0
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ML Anomaly (Initial Thr.)
Global POD: 0.72, PFA: 0.04

400 | Detected

Background
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* CF Method: A threshold is established based on a 90%
Probability of Detection (POD) for defective pixels from a
user-selected defect, creating a binary detection mask

* RMSD & ML Anhomaly Detection: The score maps are
thresholded at the 90" percentile to create a binary
detection mask

* Performance Evaluation: The resulting sensitivity maps
are compared to ground truth data to measure

performance.
G d Truth
rone I FOD (Global)
I PFA (Global)
400 Defective [ ]F1-Score (Global)
1 ' ' [
200
Pristine <
2
0.8 L 5
0 o
[o
o 06 L[ 5
=
S o
o 5
£ 04 |
©
> <
0.2 L
0 = = B
S S
& g N
&



Pristine E‘ ‘>E
) ° Defect
=) MUltI-mode detection
<
* Panel can be interrogated using various available
information when a chirp excitation is used e
* Amplitude, phase and frequency shifts (can detect subtle Freq(kH2)
changes in local mass and stiffness) .
. . Resonance frequency shift
* Fusion of these maps creates a comprehensive map of the
defects, enhancing overall detection -
* Fusioncanleadtoa sli%ht increase in speckled noise but = B
within the acceptable threshold ol
=]
Amplitude RMSD Map rnase KMSU map Frequency Shift Map (Hz) B oense UPY - UBS
500 % e
3000 U-L mig!%d-ﬁi

1000
Fuseda verect Mask

(Amp RMSD | Phase RMSD | Freq Shift)
— e

500

Detected

Background

90t percentile threshold detection maps X (mm)
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Conclusions on detection

RSMD and ML methods show consistent improvement over the currently implemented
methodology (CF)

Careful selection of the pristine training data, and fine-tuning of the model parameters is
needed for accuracy using ML

RSMD method appears to be the most reliable, however, the accuracy of this method is
dependent on the quantity of ‘normal’ response when calculating the median reference
spectrum (it relies the ‘normal’ response being the most common)

A chirp signal allows for panel interrogation using various available information (amplitude,
phase and frequency shift)

Fusion of these detection modes can lead to improved detection capability compared to
using a single mode for detection
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ML Workflow:

Labelled training

Define data
split
(train/Val)

Operation:

80/20

New measurement

Chose suitable ML

(Decision trees or
Neural networks)

Random forest

Trained network or tree

Defect classification workflow & operation

Train the network or tree

Class prediction

Amplitude

Phase

Engineered features

. ey g \
H 0,

i '
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Response
type:
Pristine or a
defect class

Evaluate
performance on

Update model parameters
and/or training data




Defect classification with ML
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* Residual spectrum (amplitude & phase) for each pixelis Ru(f) = log(L
calculated relative to the median spectrum of a carefully Ares(f) +e
selected pristine dataset

) Amplitude

qu(f) = ¢(f) — qsref(f) Phase

* Then class-specific template were generated from the training
data, using a prototype spectrum (relating to the class central
tendency — median)

* For each pixel within a class training set, the Euclidean
distance, Cosine similarity and Mahalanobis distance are
calculated using the prototype spectrum and fed to the ML OOB Error of RF Model
model as engineered features > T 1 1

04 |

* Synthetic Minority Over-sampling Technique (SMOTE), and
costing which penalises wrong classification of lesser classes,
was used to improve the class imbalance of the training data

03 |

0.2

0.1 k
0

0 100 200 300 400 500 600
Number of Grown Trees

Out-of-Bag Classification Error

* QOut-of-Bag errored is monitor for model convergence




= TNe defect fingerprint

1 5 Lngged Amplitude Residual EPEI:II‘::I by Defect T}'FIE {MEHI"I of Each Regiun}
' AdhCoregisbond '
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* Spectral information for training the ML models

* Statistical engineered features were derived from this
iInformation to increase the accuracy of the models
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Scenario 1: 2 response classes

e Skin Tmm, Core 10mm

* Core-crush created with blunt impact of

varying energies

* Train/Val on near side data, with an 80/20 split
* Tested on unseen data from the far-side scans

Ground Truth

Test Maps - Panel1_SideFar
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Predicted Class

contusion matrix - 1est Set

CoreCrush

1567

80

Pristine

22%

CoreCrush
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Predicted Class
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Scenario 2: multiple responses o

Training Set Pixels - Panel2 SideNear

. 150 inati &l
e Skin 2mm, Core 20mm (* = -
1Fiml _ Pristine
* Artificially manufactured defects y
(1]
5]
* Train/Val on near side data, with an 80/20 split e g sacn Disoons
* Tested on unseen data from the far-side scans
100.0% 100.0% 99.7% 100.0%
Ground Truth Predictions 0.3%
0 0
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5 5
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12 T
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10 - T + Standard deviation 1 g
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Limitations & implications of ML

Limitations:
* Dependent on quality of training data
* The model requires careful parameter tuning

* [tis sensitive to geometry (defect response is
learnt in context of the panel geometry)

Implications:

* Enables interpretation of new measurements
with high confidence

* Enable real-time automatic characterisation and
response prediction, including depth information

BOND TESTING
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* Detection and characterisation of kissing-bond defects

Future work

* Transition from data-driven > physics-based prediction

* Data-driven: Uses historical data to make predictions for new

measurements

* Physics-based: A digital twin of the panel can generate large amounts of

synthetic training data, improving class prediction and depth estimation

 Can also be achieved via model-inversion algorithms (optimization-based

or database-driven approaches)

* The aimistoreduce reliance on “known patterns” and move towards

capturing the underlying physics of the vibration system

* Explainability!!

Finite element!!
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Thank you for listening!
Questions?
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