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Bonded structures

• Defects (manufacturing or in-service)
• Compromise structural integrity
• Increases risk of failure

• Therefore, testing is required

• Sandwich panels and thick-section composites
• Two face skins and a core (foam, balsa & honeycomb)
• Uses: Aircraft interiors/exteriors, boats, wind turbines



NDT of bonded structures 
• These type of structures have posed a challenged for many 

years

• Conventional NDT methods struggle
• UT: high attenuation & scattering, complex signals from internal 

geometry, couplant
• ECT: can’t be used on non-metallic parts, relatively shallow 

penetration
• Thermography and Radiography: difficult to implement, 

expensive, have challenges and limitations

• Bond-testing NDT methods mitigates some of these issues
• In most cases, no couplant is needed
• Experiences far less attenuation
• Signal are easy to interpret



The BondCheck
• Multi-mode bond testing instrument

• Pitch-catch
• Resonance 
• MIA ( Mechanical Impedance )

• They work by exciting the structure and 
capturing the vibration response locally "Two panes" view

MIA probe Resonance probe Pitch-catch probe



Current methodology

• Bond testing, like all NDT methods, has 
inherent limitations

• Sensitivity decreases when calibration is 
based on a single defect

• Single-frequency, short-pulse excitation 
• limits depth sensitivity
• limits capability to fully characterize defects

• Most sensitive to large, shallow defects

• Can these issues be mitigated?

8 kHz excitation

• What is the current methodology?



Motivation
• There is a need to improve sensitivity to defects of varying sizes and 

depth

• There is a lack of ability to characterise defects reliably (including 
depth information), using low-frequency inspection techniques

• There is a need for a relatively inexpensive and easy-to-implement 
method, not requiring trained inspectors (automation)

These can be achieved by:
• Implementing excitation techniques and advanced data analysis to 

improve sensitivity and detection capability

• The application of machine learning and statistical analysis to drive 
automation and improve predictive performance (classification).



Methodology
• Chirp excitation (5-30 kHz)

• Improve sensitivity to a range of defects
• Improve sensitivity to deep defects by exciting 

through-thickness resonance & harmonics

• Capture a full spectrum of information

• Frequency-domain analysis on this data 
allows for:

• Automated detection (for various defect sizes & 
depths)

• Automated characterisation and classification of 
defects 

Chirp signal

Received waveform

Frequency spectrum



Demonstrator

• Nomex honeycomb 
sandwich panel

• The panel has a  range of 
artificially manufactured 
defects

• The panel is scanned in 
increments of 3mm

• The response is monitored 
and captured with a 
computer interface

• Scans are performed for the 
near-side & far-side for 
comparison

Panel

Probe

Probe breakout 
box

HPF

Sig gen.

Laptop

Scanning rig

TxRx

CFRP skin

Nomex honeycomb

600 x 600 mm



C-scan plots
• Visualised the 

amplitude response 
as a function of the 
frequency

• Negligible drop in 
sensitivity to far-side 
defects when 
compared to near-
side

• Detection remains 
dependent on the 
frequency using this 
method

Far-side scanNear-side scan



Detection methodologies

• Emulates current industry 
practice for bond testing

• Requires calibration for 
optimal performance

• Typically a single-
frequency excitation

• Detection is frequency-
dependent

Contrast frequency method (baseline)

RMSD algorithm

Machine 
learning 

(anomaly 
detection)

• Integrates information from 
multiple frequencies

• No prior calibration or 
knowledge of the structure 
is needed

• Detection is not frequency 
dependent

• Can be fully automated

• Integrates information from 
multiple frequencies

• Can learn form a host of 
spectral features 
simultaneously (amplitude, 
phase, band power, frequency 
shifts, etc)

• Can be automated after initial 
training



Method 1: Contrast frequency method 
(baseline)
• Contrast frequency method (baseline)

• Emulates current industry practice
• Inspection sensitivity is calibrated to a single defect

• First, an optimal frequency for inspection is 
chosen by the operator, using a calibration 
specimen

• Then, a score is calculated for each pixel. This is 
done by normalizing its response at the chosen 
frequency against the mean response of a user-
selected pristine region.

• A score map is generated for the entire panel 
using these calculated scores.

• A threshold corresponding to 90% POD of the 
user-selected defect is used to produce a binary 
detection mask

𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜 = arg max
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Method 2: RSMD algorithm
• RMS deviation (RSMD) algorithm for 

automated detection

• Quantifies the deviation from a 
reference signal (in this case the 
median of the responses) across a 
spectrum of frequencies

• Selection of the reference signal is 
automated

• Plots the pixel-by-pixel output as a 2D 
spatial score map

• By applying a threshold of the 90th 
percentile value from all values in the 
score map, we can binarize the output 
into a mask

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑥𝑥,𝑦𝑦 =
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Method 3: Machine learning
• ML is used to implement automated anomaly detection

• Establish a reference median spectrum from pristine data 𝐴̃𝐴𝑟𝑟𝑟𝑟𝑟𝑟(𝑓𝑓)

• Quantify the deviation of each pixel’s spectrum from this reference

• An Isolation Forest model is then trained on a collection of these 
residual spectra that are known to be pristine

• To generate the score map, an anomaly score is assigned to each 
spectrum, by the trained model

• A high anomaly score signifies an anomaly

• A 90th percentile threshold value of the score map is used to 
binarize the output in a mask

𝑅𝑅𝐴𝐴 𝑓𝑓 =
𝐴𝐴 𝑓𝑓

𝐴̃𝐴𝑟𝑟𝑟𝑟𝑟𝑟(𝑓𝑓) + 𝑒𝑒
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Anomaly detection workflow & operation

Defect-free training 
data

Chose suitable ML model
(Decision trees  or Neural networks)

Evaluate 
performance

Update model parameters 
and/or training data

Train the network or tree

Pristine

Pr
ob

ab
ili

ty

ML Workflow:

Operation:

Normal (defect-
free)

Anomaly

Amplitude

Phase

Engineered features

Trained network or treeNew measurement Prediction

Automated detection is based 
on a 90th percentile threshold

Isolation forest



Establishing the ground truth
• The ground truth mask is a summary of what is detectible
• Detection is defined as any defect with a PFA of less than 

40%, when it’s excited at resonance
• Meaning it is distinguishable from the background noise
• Using this logic, 14 of 23 known defects are detectible using 

the amplitude information
• The ground truth mask is a reference, used to evaluate the 

performance of the proposed detection methods
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Comparison at 90% POD & percentile 
• CF Method: A threshold is established based on a 90% 

Probability of Detection (POD) for defective pixels from a user-
selected defect, creating a binary detection mask

• RMSD & ML Anomaly Detection: The score maps are 
thresholded at the 90th percentile to create a binary detection 
mask

• Performance Evaluation: The resulting sensitivity maps are 
compared to ground truth data to measure performance.

ScoreMap(Amp. Ratio at 15.0kHz)
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Far-side comparison
ScoreMap(Amp. Ratio at 14.8kHz)
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• CF Method: A threshold is established based on a 90% 
Probability of Detection (POD) for defective pixels from a 
user-selected defect, creating a binary detection mask

• RMSD & ML Anomaly Detection: The score maps are 
thresholded at the 90th percentile to create a binary 
detection mask

• Performance Evaluation: The resulting sensitivity maps 
are compared to ground truth data to measure 
performance.
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Multi-mode detection
• Panel can be interrogated using various available 

information when a chirp excitation is used
• Amplitude, phase and frequency shifts (can detect subtle 

changes in local mass and stiffness)
• Fusion of these maps creates a comprehensive map of the 

defects, enhancing overall detection
• Fusion can lead to a slight increase in speckled noise but 

within the acceptable threshold
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Conclusions on detection
• RSMD and ML methods show consistent improvement over the currently implemented 

methodology (CF)

• Careful selection of the pristine training data, and fine-tuning of the model parameters is 
needed for accuracy using ML

• RSMD method appears to be the most reliable, however, the accuracy of this method is 
dependent on the quantity of ‘normal’ response when calculating the median reference 
spectrum (it relies the ‘normal’ response being the most common)

• A chirp signal allows for panel interrogation using various available information (amplitude, 
phase and frequency shift)

• Fusion of these detection modes can lead to improved detection capability compared to 
using a single mode for detection



Defect classification workflow & operation

Labelled training 
data

Define data 
split

(train/Val)

Evaluate 
performance on 
validation data

Update model parameters 
and/or training data

Train the network or treeML Workflow:

Operation:

Random forest

Response 
type:

Amplitude

Phase

Engineered features

Trained network or treeNew measurement Class prediction

Pristine or a 
defect class

Chose suitable ML 
model

(Decision trees  or 
Neural networks)
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Defect classification with ML
• Residual spectrum (amplitude & phase) for each pixel is 

calculated relative to the median spectrum of a carefully 
selected pristine dataset

• Then class-specific template were generated from the training 
data, using a prototype spectrum (relating to the class central 
tendency – median)

• For each pixel within a class training set, the Euclidean 
distance, Cosine similarity and Mahalanobis distance are 
calculated using the prototype spectrum and fed to the ML 
model as engineered features

• Synthetic Minority Over-sampling Technique (SMOTE), and 
costing which penalises wrong classification of lesser classes, 
was used to improve the class imbalance of the training data

• Out-of-Bag errored is monitor for model convergence

𝑅𝑅𝐴𝐴 𝑓𝑓 = log
𝐴𝐴 𝑓𝑓

𝐴̃𝐴𝑟𝑟𝑟𝑟𝑟𝑟 𝑓𝑓 + 𝑒𝑒

𝑅𝑅𝜙𝜙 𝑓𝑓 = 𝜙𝜙 𝑓𝑓 − �𝜙𝜙𝑟𝑟𝑟𝑟𝑟𝑟(𝑓𝑓)
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The defect fingerprint

• Spectral information for training the ML models

• Statistical engineered features were derived from this 
information to increase the accuracy of the models



Scenario 1: 2 response classes
• Skin 1mm, Core 10mm
• Core-crush created with blunt impact of 

varying energies
• Train/Val on near side data, with an 80/20 split
• Tested on unseen data from the far-side scans
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Scenario 2: multiple responses
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• Skin 2mm, Core 20mm
• Artificially manufactured defects
• Train/Val on near side data, with an 80/20 split
• Tested on unseen data from the far-side scans



Limitations & implications of ML
Limitations:
• Dependent on quality of training data
• The model requires careful parameter tuning
• It is sensitive to geometry (defect response is 

learnt in context of the panel geometry)

Implications:
• Enables interpretation of new measurements 

with high confidence
• Enable real-time automatic characterisation and 

response prediction, including depth information



Future work
• Detection and characterisation of kissing-bond defects

• Transition from data-driven → physics-based prediction

• Data-driven: Uses historical data to make predictions for new 
measurements

• Physics-based: A digital twin of the panel can generate large amounts of 
synthetic training data, improving class prediction and depth estimation

• Can also be achieved via model-inversion algorithms (optimization-based 
or database-driven approaches)

• The aim is to reduce reliance on “known patterns” and move towards 
capturing the underlying physics of the vibration system

• Explainability!!

Finite element!!
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Thank you for listening!
Questions?
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