

Advanced Ultrasonic Spectroscopy for Improved Inspection of Highly Attenuative Components

A4A NDT Forum, September 2024

Janelle Chambers Dennis Roach Kratos Defense & Rocket Support Services janelle.chambers@kratosdefense.com

KRATOS SRE: Advanced Materials Characterization

Nondestructive Characterization: Solution Provider for Difficult Inspection Applications

Advanced Ultrasonic Spectroscopy for Improved Inspection of Highly Attenuative Components

Composite Laminates

Composite Repairs

Composite Honeycomb

Composite Impact Damage

Successfully Used UltraSpec[™] to Solve Multiple Inspection Challenges

- Composite Subsurface Damage Through Thick Specialty Coatings
 - Other NDE methods were unsuccessful
- Ceramic Matrix Composites (CMC) Characterization Delaminations, Porosity
 - 0.1" to 2.0" Thicknesses, Rough Surfaces, Complex Geometries
- Challenging Bondline Assessments
 - Assembly Bonds, Adhesive Bonds, Chemical Bonds, etc.
- Complex Stacks of Materials
 - Honeycomb, Dissimilar Materials

<u>Motivation</u> - Extensive/increasing use of composites on commercial aircraft and increasing use of NDI to inspect them

<u>Goal</u> - Improve flaw detection performance in composite aircraft structure with UltraSpec[™]

Carbon Iaminate Carbon sandwich Fiberglass

Aluminum/steel/titanium pylons

Aluminum

Composite Structures on Boeing 787 Aircraft

Composite Center Wing Box

A380 Pressure Bulkhead

Sources of Damage in Composite Structure

One airline reports 8 composite damage events per aircraft (on avg.) with 87% from impact

Cost = \$200K/aircraft

Lightning Strike on Thrust Reverser

Towing Damage

Bird Strike

Disbonding at skin-tohoneycomb interface

Inspection Challenge – Hidden Impact Damage

Backside fiber failure from ice impact

Visible Impact Damage – external skin fracture

Backside Damage – internal skin fracture & core crush

Damage from ground vehicle

Extent of Visible Damage from Outside

How UltraSpec[™] is Different from Traditional UT

Long Duration Pulse

- User-defined frequency range
- Based on material
- Improved signal-to-noise
- MORE ENERGY into and out of the material structure

UltraSpec

 $UltraSpec^{\text{TM}} - Swept-frequency\ ultrasonic\ spectroscopy$

- Dry-coupled, automated scanning of complex geometries
- Proven to be effective at evaluating a wide range of composite materials and highly attenuative materials
- Unique ability to provide frequency, resonance and time reflections for *enhanced material understanding*
- Advanced analytical tools for delamination detection, crack detection, porosity evaluation and bond evaluation

US Patent# 10605789

Frequency 2*thickness

UltraSpec[™]: Three Classes of Data Example

Spectral Response (Signature)

- Very Repeatable
- Contains Resonances of Each Layer Individually
- Contains Resonances of Full Thickness or Combinations of Layers

Advanced Interpretation Module (AIM)

Data Cube "Slices" Peak/Valley Fits with Physics Calculator Structure/Feature Identification **UltraSpec** TIME (µs) FREQ (kHz) Advanced 1 Layer 900 3.8 Interpretation 450 4.9 2 Layers 300 6.0 3 Layers Module (AIM) 4 Layers 225 7.1 5 Layers 180 8.2 6 Layers 150 9.3 Self-Referencing Algorithm Identifies Areas of Change **Spatial Comparisons** Blob Detection, Grouping Lod Mar Security Solution * + + + Q =

UltraSpec Scanning Options: UR5e Collaborative Cobot, XY Encoder

Customized Probe Fixture TecFlex: Improved Design for Aircraft Mounting (Complex Curvatures)

Manual

11

Assess UltraSpec Flaw Detection Performance Composite Laminate Proficiency Specimen 1C

(Developed to train and refresh inspectors for composite laminate structures - challenging flaws)

Assess UltraSpec Flaw Detection Performance Composite Laminate Proficiency Specimen 1C

ITEM #	FLAW TYPE	SIZE	PLY LAYER
1	IMPACT	Ø1.50	SEE SECTION B-B
2	CARBOSPHERES	Ø2.00	BTN PLIES 16 & 17 (50%)
3	PILLOW INSERT	Ø1.50	BTN PLIES 8 & 9 (25%)
4	PILLOW INSERT	Ø0.75	BIN PLY 32 & ADHESIVE
5	PILLOW INSERT	Ø1.00	BTN PLY 16 & 17 OF SUBSTR
6	PILLOW INSERT	1.00 X 1.00	BIN PLY 10 & 11 OF TAPER
7	PILLOW INSERT	1.00 X 1.00	BTN PLY 24 & 25 (75%)
8	PILLOW INSERT	Ø1.50	BTN PLY 4 & 5 OF TAPER
9	PILLOW INSERT	Ø0.75	BTN PLY 26 & 27 OF TAPER
10	PILLOW INSERT	1.50 X 1.50	8TN PLY 24 & 25 (75%)
11	GREASE	Ø1.00	BTN PLY 1 & 2 OF TAPER
12	GRAFOIL	Ø1.00	BIN PLIES 16 & 17 (50%)
13	FLAT BOTTOMED HOLE	Ø1.50	0.120" V (BTN PLIES 16 & 17)
14	FLAT BOTTOMED HOLE	Ø0.50	0.360" ¥ (BTN PLIES 48 & 49)
15	FLAT BOTTOMED HOLE	Ø0.50	0.060" T (BTN PLIES 24 & 25)
16	PREPREG BACKING	0.75 X 0.75	BTN PLIES 8 & 9 (25%)
17	PREPREG BACKING	2.00 X 2.00	BTN PLIES 24 & 25 (75%)
18	ADHESIVE BACKING	2.00 X 1.50	BTN ADHESIVE & PLY 1 OF SUBSTR
19	SEALANT BLOB	2.00 X 1.00	32 FLY BACKSIDE
20	SEALANT BLOB	3.00 X 0.75	64 PLY BACKSIDE
21	GRIND DISK GROOVE	0.10 x 0.75	APPROX, 0,070" V

1C Panel: PEUT vs UltraSpec[™] Results

Spectral Amplitude ~720kHz* *3rd harmonic of 32 ply skin, 6th harmonic of 64 ply full thickness

Time Amplitude near 64 ply backwall

Spectral Amplitude ~720kHz* *3rd harmonic of 32 ply skin, 6th harmonic of 64 ply full thickness

Time Amplitude near 64 ply backwall

Traditional A-Scan (Flaw #5)

1C Panel (Flaw #5): PEUT vs UltraSpec[™] Results

UltraSpecTM Pulse Compression (Flaw #5)

Processed Time Domain: More Robust **PEAKS represent where full sweep aligns in time.** See things that might not otherwise be found in traditional A-Scans.

Inspection of Repairs in Honeycomb Composite Structures Scarf Repair SK 12595-R1

4-ply Repair Engineered FLAWS in the Repair Debonds, Delaminations

Inspection of Repairs in Honeycomb Composite Structures Scarf Repair SK 12595-R1 **Traditional NDE**

СŶ, FFT 115.395

Inspection of Repairs in Honeycomb Composite Structures Scarf Repair SK 12595-R1

Early Reflection Spectral Amplitude Spectral Amplitude ~14µs 226 kHz 157 kHz

0

Very small flaw, but visible in multiple frequencies and times (very dramatic change in signal/signature).

FAA Composite Laminate Aircraft Structure Sample

UltraSpec[™] Results

More detail than traditional UT results.

Stringer Delamination/Disbond
Stringer Delamination/Disbond
SHM Sensors

Stringer Partial Disbond

Clearly found partial disbond.

FAA-AANC NDI Test Specimen Library Sample

Future Work

- POD Studies Laminate Composites
- Bonded Structures (Composite, Metal, Both)
- Weak Bonds (Composite, Metal)
- Characterize material properties (C/C)

Working on Steel/Steel Weak Bond Studies

FAA-AANC NDI Test Specimen Library Samples

Weak Bond Test Specimen

Samples from Composite Repair SME at Redstone Arsenal

Acknowledgements

- Kratos TEAM: Tricia Vines, Nathan Davis, Kyra George, AJ Matta, Stephen Ferrell, Jonathan Kinney, Cole Walton
- Dennis Roach, DR Engineering
- FAA AANC NDI Test Specimen Library (Paul Swindell, Danielle Stephens)

Questions?

Can we help you with your inspection challenges?

- Kratos SRE is available for demonstrations
 - TEAMS meetings or in-person
- If you have difficult inspection challenges, send us a sample!
 - We can perform a quick assessment