FAA SHM RESEARCH PROGRAM

Federal Aviation Administration

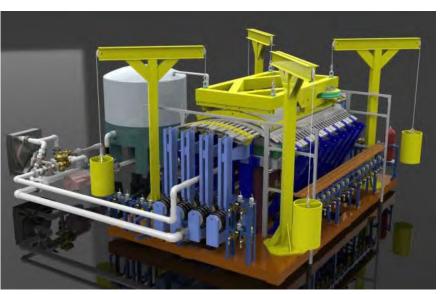
Presented to: By: Date: A4A NDT Forum Danielle Stephens, Paul Swindell Sept 29, 2022

Outline

- SHM Program Overview
- Past Work
 - -Airframe Beam Structural Test (ABST)
 - -Probability Of Detection (POD) Sensitivity study
 - –Full-Scale Aircraft Structural Test Evaluation and Research (FASTER)

Current Work

- -FASTER
- -Boeing 737 Aft Pressure Bulkhead
- Future Work
 - -Consortium: Model Assisted POD (MAPOD)
- Summary


PROGRAM OVERVIEW: PURPOSE

- Help FAA sponsors have a better understanding of SHM as certification needs increase
- Produce data on SHM sensitivity, durability, and repeatability
- Provide a government database on SHM performance shareable with others to test algorithms/data analysis techniques
- Support SAE AISC standards development
 - Develop data to test SHM methodology for Probability of Detection (POD)
- Ensure SHM provides required level of confidence and reliability "as good as" or "better than" traditional NDI approaches

SHM on FAA Emerging Technologies Research

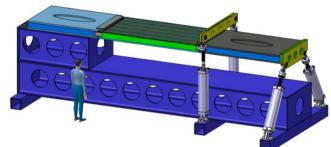
- In order to assess SHM capabilities (detect/monitor damage growth) and collect data, SHM sensors were installed on two FAA Emerging Technologies Programs:
 - -Full-Scale Aircraft Structural Test Evaluation and Research (FASTER) Test: Advanced fuselage panels
 - -Airframe Beam Structural Test (ABST): 18 Ply solid laminate composite Wing Panels

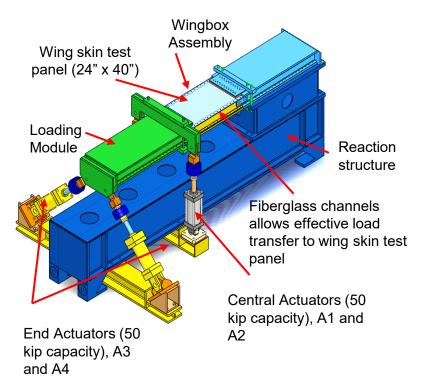
ABST Wing skin test panel (24 x 40 in.)

Federal Aviation Administration

FASTER

PAST PROGRAMS


- ABST: 18 Ply solid laminate
- POD/Sensitivity Assessment: AI-Li test pieces
- FASTER Test: Aluminum Lithium skin structure


Airframe Beam Structural Test (ABST)

- 18 ply solid laminate composite
- Partner:
- Panels: 6 panels completed
- Honeycomb composite (current test program)
 - Fatigue/Residual strength tests

Future - Large Wingbox Test Fixture

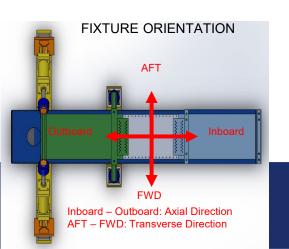
Static and Fatigue loading capability for composite wing panel damage tolerance studies.

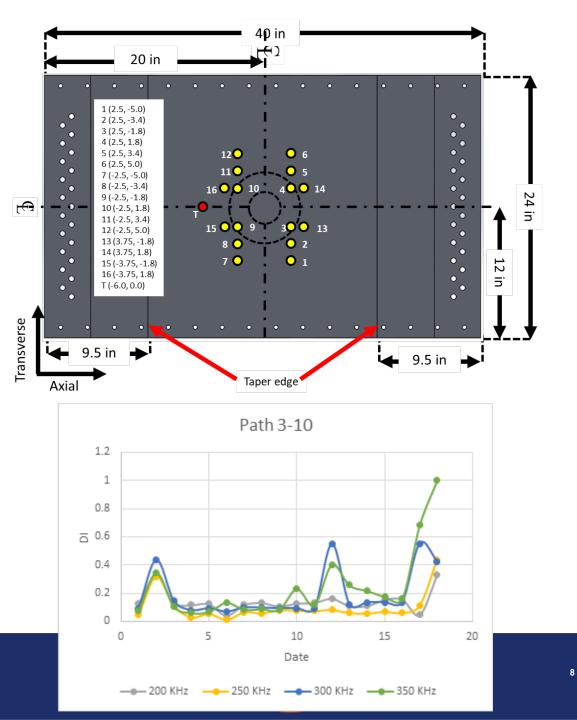
ABST

- Panels: Test (1 month)
 - Fatigue and residual strength tests
 - Delaminations common
 - 5k cycle: Inspection includes NDI/SHM
 - Once delam of sufficient size, residual strength test to failure
- Solid Laminate complete, Honeycomb panel currently testing

Partial-Depth Scarf Panel

SHM Sensors Layout


O SHM Sensor


Temperature Sensor

All the SHM sensors are on the internal surface of the panel Origin (0,0) is Center of the Clean-up damage Clean-up Damage Diameter =

3″

Scarf Diameter = 6.7"

POD/Sensitivity Assessment Tests

Team Members/Collaborators

• Federal Aviation Administration (FAA)

- Kelsey Warfle (Test Technician)
- Paul Swindell (NDI/SHM)
- Patrick Ray (Test Engineer)
- Danielle Stephens (Test Engineer)
- Dave Stanley (Test Engineer)
- Kevin Stonaker (Test Engineer)
- Greg Schneider (Sponsor)
- Walt Sippel (Sponsor)
- John Bakuckas (Structures Lead)

• Drexel University

- Ali Raza (Student)
- Jonathan Awerbuch
- Tein-Min Tan

- Metis
 - Seth Kessler
 - Acellent
 - Amrita Kumar
 - Susheel Kumar Yadav

STRUCTURAL

MONITORING

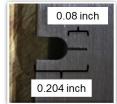
SYSTEMS plc

- Structural Monitoring Systems
 Trevor Lynch-Staunton
- Iowa State University
 Bill Meeker
- Sandia National Laboratories
 - Dennis Roach

IOWA STATE UNIVERSITY

metis design

Center for Nondestructive Evaluation


Project results herein are the product of a collaborative effort

POD/Sensitivity Assessment Tests

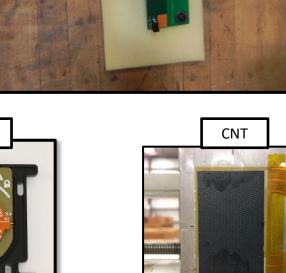
Fixed sensors placed on notched 23"L x 1.5"W x 0.13"T Al-Li test specimens

 ³⁸⁴ TYP
 ³⁸⁴ THRU
 ³⁸⁴ THRU
 ³⁸⁴ THRU
 ^{22.41}
 ^{23.50}

- 24 Test Specimens: MTS testing to grow fatigue cracks
 - 12 with Piezoelectric Transducers (PZT) and Carbon Nanotube (CNT) Sensors
 - -12 with PZT and Comparative Vacuum Monitoring (CVM) Sensors
- Test Parameters: Develop data to run through POD SHM methodologies
 - A minimum of three data points needed before and after crack formation observation
 - -Visual measurements were taken along with Eddy current inspections
 - Consistent, steady crack formation and extension that fits methodology

FAA SHM Research Program

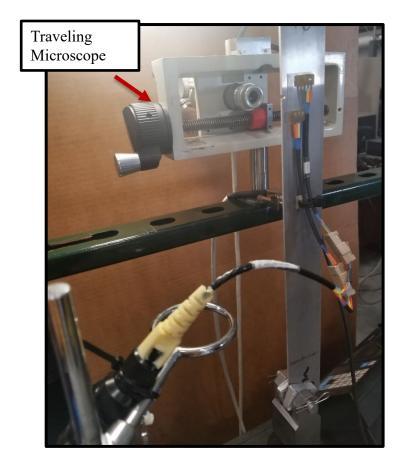
Sept 29, 2022

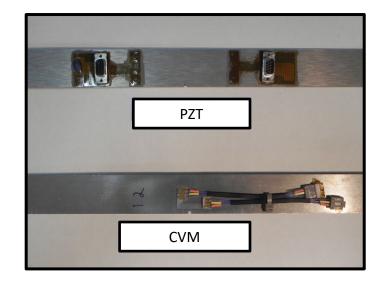

Test Fixture Set-Up - ASTM E647 ESE(T) Sample in MTS: PZT & CNT

PZT

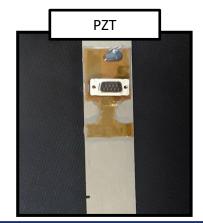
PZT

FAA SHM Research Program

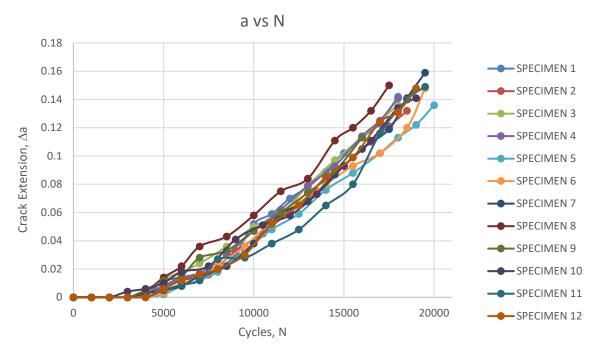

CNT



Federal Aviation Administration


Sept 29, 2022

Test Fixture Set-Up Sample in MTS: PZT & CVM

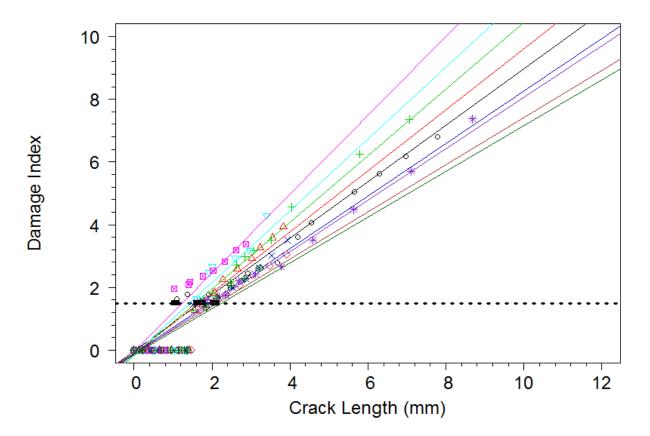


Federal Aviation Administration

Truth Data vs Sensor Data

• Data was collected using visual and NDI methods

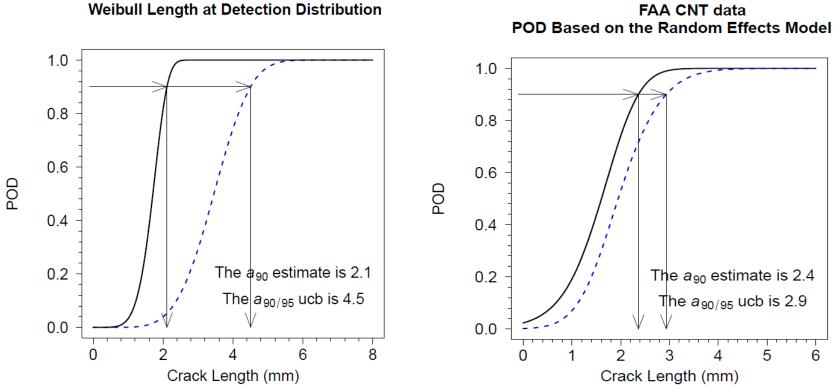
- Visual: Traveling microscope with linear digital micrometer
- NDI: High Frequency Eddy current


Correlating different sensor technologies with measured crack growth

POD/Sensitivity Assessment: Results

- Specimen Testing completed 2019
- Meeker White Paper "Statistical Methods for Probability of Detection in Structural Health Monitoring"
- FAA Draft report completed, Final report in editing
- Not an "apples" to "apples" comparison of results
- Ideally need more samples

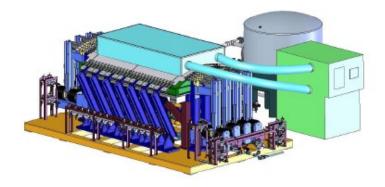
CNT – Length at Detection Plot

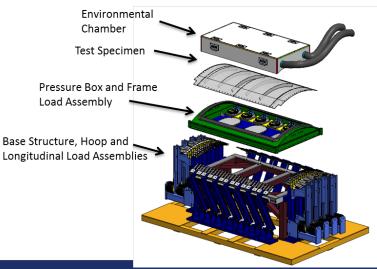


LaD is defined at the crack length just after detection (so the regression lines are not used)

Federal Aviation Administration

CNT – POD samples

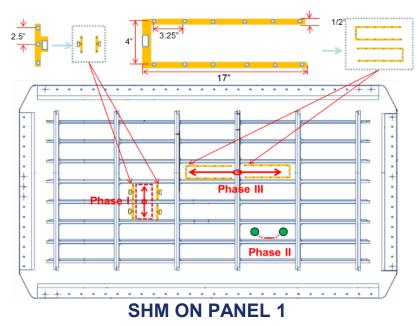


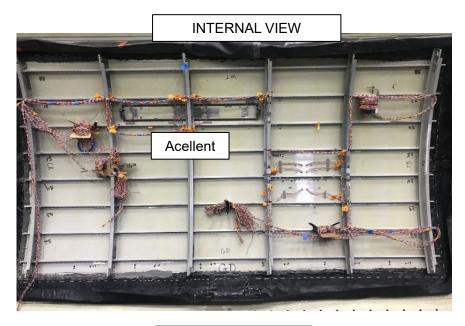

Full-Scale Aircraft Structural Test Evaluation and Research (FASTER)

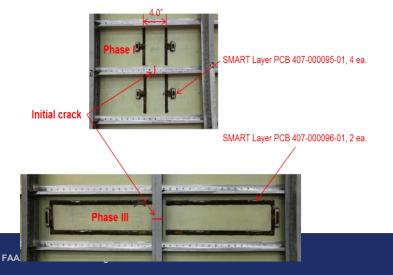
Test emerging technologies

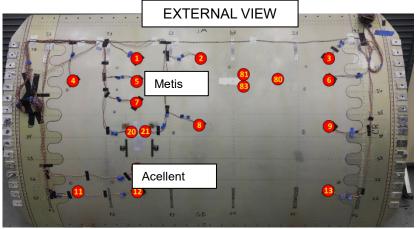
- AI-Li skins/frames/stringers
- Friction stir weld lap splice
- Bonded stiffeners
- Multisite damage
- Partners: Arconic/Embraer
- Panels 1 and 2 complete, testing 3 now
- Panels 4 and 5 will be last panels

Fixture Exploded View



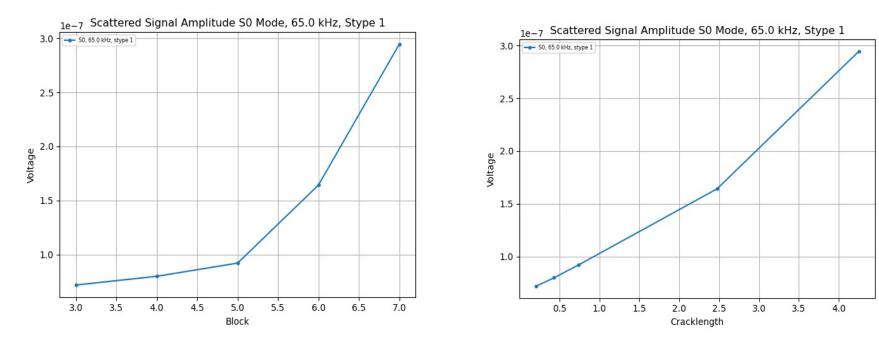

FASTER


- Phase 1-3: Serial tests (approx. 6 months)
 - Sawcut thru skin/stiffener
 - Grow fatigue cracks
 - 5k cycle: Inspection includes NDI/SHM
 - Crack thru bay, repair
- Phase 2 started on panel 3
- Well characterized cracks with NDI/SHM, frequent inspection opportunities
 - Strain gauges, Digital Imaging Correlation
 - NDI: EC and Detailed Visual Inspection (DVI)
 - SHM: PZT (Acellent and Metis)



FASTER Panel Instrumented with SHM

FASTER SHM


- Panel 1: Acellent smart sensors (Phase 1) Metis sensors (Phase 2) Acellent smart sensors (Phase 3)
- Panel 2: Acellent/Metis PZT sensors (Phase 1) Acellent sensors (Phase 2) (same as Phase 3 Panel 1) Metis CNT (Phase 2)

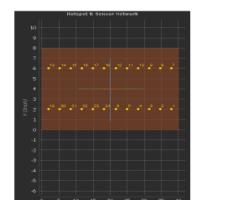
 Panel 3: Acellent/Metis PZT sensors (Phase 1)
 Current { Acellent sensors (Phase 2) (same as Phase 3 Panel 1) Metis CNT (Phase 2)

• Panel 4 and 5: TBD

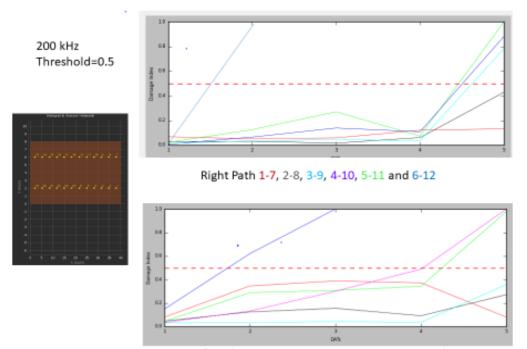
ase z)				
		(1)	2	3	4	5
		Baseline	Advanced Density Reduction	Advanced Materials	FML Reinforced	FML Reinforced (Optimized for Weight)
Component	Skin	2524-T3 sheet	2060-T8E30 Al-Li sheet	2029-T3 sheet	2524-T3 sheet	2524-T3 sheet
	Stringer	7150-T77511 extrusions, riveted	2055-T84 Al- Li extrusions, riveted	2055-T84 Al-Li extrusions, riveted	7150-T77511 extrusions, with FML straps	7150-T77511 extrusions, with FML straps
	Frame	7075-T62 - shear tied, extruded, riveted	2099-T83 Al-Li integral extrusions, riveted	2099-T83 Al-Li integral extrusions, riveted	7075-T62 - shear tied, extruded with FML straps	7075-T62 - shear tied, extruded with FML straps

FASTER Results Sample

Each block represents an inspection point with a known crack length

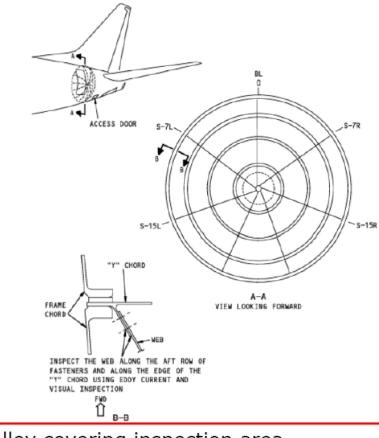

Metis Sensors Panel 2, Phase 1

FASTER Results Sample


Panel 1: Phase 3

Filename		Cycle	Left Crack	Right Crack
Initial Notch 1.5"		opere	CCTC CEDOR	ingra crock
08_08_18_17_00_53	Baseline	c	0.75	0.7
08_09_18_07_30_53	Baselne			
08_20_18_16_15_41		1 3000	0.862	0.83
08_27_18_14_20_52		z		
Notch extended to 2"				
09_07_18_13_51_42		3 6000	1	i :
09_14_18_11_21_09		4 9000	1.177	1.17
Notch extended to 3.25"				
09_18_18_11_57_48		12000	1.625	1.62
09_25_18_08_38_08		6 15000	1.704	1.72
10_11_18_08_58_02		7 24500	2.127	2.11
10_24_18_16_50_32		B 32500	2.698	3 2.67
10_31_18_13_21_48		9		
10_31_18_13_30_59	1	36500	3.103	3.08
11 16 18 08 21 42	1	43600	7.55	5 7.87

SHM File to Crack Size


FAA SHM Resea

Boeing 737 Aft Pressure Bulkhead

Boeing B737 application - APB

737 Fus Aft Pressure Bulkhead

- SB 737-53A1248
 - Threshold 25,000 FC
 - Repeat Intervals
 - LFEC 1,200 FC
 - HFEC 3,800 FC
- Airworthiness Directive AD 2016-18-15
- Airplane Models: 737-600, 737-700, 737-700C, 737-800, 737-900

Aft Galley covering inspection area

Boeing 737 Aft Pressure Bulkhead Testing Environmental Chamber Testing

- Boeing testing PZT sensors as an alternate means of compliance to Service Bulletin shown in previous slide (HFEC)
- Need POD curves
- FAA to test specimens at various temperatures via environmental chamber; take PZT sensor data
- Boeing statisticians to analyze data and generate POD curves

FUTURE WORK

Industry Consortium: Model Assisted POD (MAPOD)

Purpose:

1) Establish a test program that can exercise any of the SHM POD methodologies and to use MAPOD.

2)To have a group of statisticians review the methodologies and data available to provide concurrence that statistics match the data.

Statistics Team

- -Peter Parker: NASA Lead
- -Dr. Meeker: ISU
- -Elena-Beatriz Garcia: EASA
- -Sabyasachi Basu: Boeing
- -Nicolas Dominguez: Airbus

- -Fernando Dotta: Embraer
- -Rafik Hadjria: Safran
- -Avinash Sarlashkar: Sikorsky
- -David Forsyth
- -Dennis Roach

Test Team: VISION

- Configuration chosen
- Define goals/purpose
- Exercise MAPOD
- DOE needs to be restarted
- Samples constructed (Embraer tentative)
- MAPOD Model to be developed (NASA Bill Schneck)
- Test Program (FAA tentative)
- Details

Summary

FAA SHM research program

-Lead to Boeing approving CVM as AMOC to HFEC on 737 fuel tank fitting (first commercial use of SHM)

 Assisted in development of FAA Issue Paper for 737 wifi antenna application for SHM use to replace existing NDI Inspections (first FAA approved use of SHM)

-Assisting Boeing in 737 APB potential application

Sept 29, 2022

Summary

- FAA SHM research program very active
 - -Data development for certification, standardization, and public usage
 - -CRADA with Metis, Simmonds, Clarkson University, Acellent, Embraer, Mistras, and Boeing
 - -Working agreement with NASA Langley
- NDI OEMS interested in participating in test program welcome
- SHM interest for use on civil aircraft is growing
- SAE Aerospace Industry Steering Committee looking for operators to join

QUESTIONS?

Danielle Stephens danielle.stephens@faa.gov Paul Swindell Paul.E-CTR.Swindell@faa.gov

FAA SHM Research Program

Sept 29, 2022

