

Developments to Facilitate Routine Use of SHM on Commercial Aircraft

SHM Solutions & NDI Challenges

Difficulty in loads assignment, stress and fatigue calculations produces demands on NDI - "You want me to find a flaw where, and how small??"

Field Evaluation of CVM Sensor Applications – Decal Mode

Function & Durability Testing - To assess the long-term viability of CVM sensors in an actual operating environment, 22 sensors were installed on DC-9, 757 & 767 aircraft for functional evaluation:

SLS connector routed to access panel STRUCTURAL MONITORING S Y S T E M S **Monitoring CVM**

Quantifying Probability of Crack Detection

Test Scenarios:

<u>Material</u>	<u>Thickness</u>	<u>Coating</u>
2024-T3	0.040"	bare
2024-T3	0.040"	primer
2024-T3	0.071"	primer
2024-T3	0.100"	bare
2024-T3	0.100"	primer
7075-T6	0.040"	primer
7075-T6	0.071"	primer
7075-T6	0.100"	primer

Material	Plate Thickness (mm)	Coating	90% POD for Crack Detection (mm)
2024-T3	1.02	Bare	1.24
2024-T3	1.02	Primer	0.53
2024-T3	1.80	Primer	1.07
2024-T3	2.54	Bare	6.91
2024-T3	2.54	Primer	2.29
7075-T6	1.02	Primer	0.66
7075-T6	1.8	Primer	0.84
7075-T6	2.54	Primer	0.58

Summary of Crack POD Levels for CVM Deployed on Different Materials, Surface Coatings, and Plate Thicknesses

NDI vs. SHM – Definition

Nondestructive Inspection (NDI) – examination of a material to determine geometry, damage, or composition by using technology that does not affect its future usefulness

- High degree of human interaction
- Local, focused inspections
- Requires access to area of interest (applied at select intervals)

Structural Health Monitoring (SHM) – "Smart Structures;" use of NDI principles coupled with in-situ sensing to allow for rapid, remote, and real-time condition assessments (flaw detection); goal is to reduce operational costs and increase lifetime of structures

- Greater vigilance in key areas address DTA needs
- Overcome accessibility limitations, complex geometries, depth of hidden damage
- Eliminate costly & potentially damaging disassembly
- Minimize human factors with automated data analysis
- Reduced operating and maintenance costs
- Early flaw detection to enhance safety and allow for less costly repairs

SHM: process of acquiring and analyzing data from on-board sensors to determine the health of a structure (AISC-SHM)

Comparative Vacuum Monitoring (CVM) Technology Deployment

- Sensors conformable to complex contours
- Easy installation process
- Sensors designed with a fail-safe mode
- Monitoring process with PM200 device is simple (two keystrokes)
- Certification Completed with FAA routine use approved (Service Bulletins, OEM Manuals, STC, AMOC)
- Easy adoption of technology demonstrated by airlines

CVM Sensor Response – Crack Detection Uses a Damage Threshold

PM200 Readout – No Cracks Detected

INSPECTION SUMMARY	T	***
🖌 Fred Henry Bloggs	8	22.2*C
Asset Name : Sensor Location :	My Jumbo Next to	Jet No2 the Wing
ALL TESTS	PASSI	ED
Quit Detail		-test

Crack detection occurs when dCVM exceeds Damage Threshold (Green Light – Red Light)

Historical CVM Partners for Integration into Routine Maintenance

CVM Success on CRJ Aircraft

Pilot program with Bombardier and Air Canada

Inspect in the radius

Sensor Success:

- Design
- Surface
 preparation
- Access
- Connection
- Quality control

First detection of a fatigue crack on an aircraft (confirmed by dye penetrant test)

CVM Sensor

Embraer CVM & PZT Flight Tests – Azul Aircraft PR-AYW

Installation Summary

STRUCTURAL MONITORING

YSTEMS

- Date of Installation: Nov 2014
- Service Bulletin: SB190-00-0029
- Zone: Central Fuselage II
- CVM on Center Fuselage End
 Fittings

Consistent CVM Data Over Two Years of Flights - dCVM Well Below Damage Detection Threshold

CVM Sensor Network Applied to 737 Wing Box Fittings

- Comprehensive performance assessments completed: sensitivity, reliability, durability
- Flight testing: successful operation on flying aircraft
- Formal approval from aircraft manufacturers and aviation regulators

STRUCTURAL MONITORING SYSTEMS

~ 1.5 M hours of successful flight history

737NG Center Wing Box – Accumulating Successful Flight History

Aircraft Parked at Gate After Final Flight of the Day

Access to SLS Connectors Through Forward Baggage Compartment

Connecting SLS Leads to PM-200 to Monitoring Sensor Network

STRUCTURAL MONITORING S Y S T E M S

Adoption of SHM at Airlines - Job Cards Produced to Guide All Aspects of CVM Deployment

CVM SENSORS AT WING CE SHEAR FITTINGS (STA 540), SECTION 01 -3		Zone: 130 - Subzone - Body STA 540 to STA 727			WE No
A/C 3602 Card 5711-01044	-01-3 Crew 12				
DELTA	B737	A.A. Worl	kcard	Page 2 of 4	

Scan Pages 2 of 4 Job # 059-0003

INFORMATION:

STRUCTURAL MONITORING SYSTEMS

For AA details, access the AA via the AA Management System. AA Management System and tutorial are located on TOHP under "Maintenance Links".

- 1. Ensure disposition of each of the 10 shear fittings from 5711-01044-01-2.
 - A. If four (4) or more shear fittings contain cracks, then all 10 shear fittings will be replaced; contact Planning and proceed to 5711-1044-04 (N/A this card).
 - B. If only one, two or three fittings are cracked, then only those fittings will be replaced (contact Planning and proceed to 5711-01044-04 for replacement of those fittings; N/A the steps corresponding to sensor installs for those affected fitting zones on this card).
 - (1) The remainder of the fittings (in a non-cracked zone) will undergo sensor installation; proceed to next step.

		Disposition
		Inspector
2.	Locate center wind box front spar shear fittings at Left Buttock Line (LBL) 54.60, 40.87, and 32.40 at L	Body Station
	(STA) 540. Install CVM sensors on all three fittings per Delta Technique Sheet SHM 100-57: B737-800 C	CVM Installation
	at Wing Center Section - Front Spar Shear Fittings (STA 540).	
NO	TE: If one or more of these fittings were found cracked in 5711-01044-01-2, then N/A the step for that fitting only the step (of this only the step of	U

- only the cracked fitting or fittings via 5711-01044-0. Installation of CVM sensors will not occur on the affected fitting(s). Refer to Delta Technique Sheet SHM 100-57: B737-800 CVM Installation at Wing Center Section Front Spar Shear Fittings (STA 540), for details about 'capping' the tubing to bypass the intended sensor location on the affected fitting(s).
- NOTE: If the surface needs primer touch-up, accomplish via BSOPM 20-44-04 prior to installing sensors. Ensure surface meets requirements of Delta Technique Sheet SHM 100-57: B737-800 CVM Installation at Wing Center Section Front Spar Shear Fittings (STA 540).

LBL 54.60	LBL 40.87	LBL 32.40
Mechanic	Mechanic	Mechanic

- Job Cards point to 'Technique Sheet'
- Delta Technique Sheet
 used for CVM Installation
 - Date/revision controlled by Level III
- Second Delta Technique Sheet used for CVM Monitoring/Inspection
- Correct sign-offs needed (I/M)
- "What if" scenarios were covered

737 NDT Manual - New SHM Chapter Published (Nov 2015)

Building Block to Approval for Routine Use of SHM

BOEING			MyBoeingFleet Maintenance Documents
Maintenance Docs		Contact Us	Help
Maintenance & Repa	air Documents		Select a Product or Service V
	737 Non-Dest	ructive Testing	g Manual
Document: D6-37239 Revision: 15Nov2015 Rev Level: 117	Search this document fo Search Tips	Submit	Supplemental Videos ↔ Go Back
Non-Destructive Testing Manual Check boxes to add or remove fr		c <mark>k All</mark>	
FRONT MATTER			
PART 01 - GENERAL			
PART 02 - X-RAY		C	hapter 1 – Comparative Vacuum Monitoring
PART 04 - ULTRASONIC			
PART 05 – STRUCTURAL HE			
PART 06 - EDDY CURRENT			
PART 09 - THERMOGRAPH	Y		
PART 10 - VISUAL/OPTICAL			

737 NDT Manual – CVM Installation Instructions Added (Jan 2016)

BOEING			MyBoeingFlee Maintenance Document	at S
Maintenance Doc:	5	Contact Us	Help	
Maintenance & Rep	pair Documents		Select a Product or Service	~
	737 Non-Dest	ructive Testing	Manual	
Document: D6-37239 Revision: 15Nov2015 Rev Level: 117	Search this document for: Search Tips	Submit	 Supplemental Videos Back to Table of Contents 	
PART 05 - COMPARATIN	/E VACUUM MONITORIN from search. <u>Check All Unchec</u>			
PART 05, FRONT MATTER				- 1
SECTION 57-10, MAIN FRA	AME			
Maintenance Doc:	S	Contact Us	Help	
and 1772 E	Copyright © 1999-2015 The Boein	CCN 9E991, unless ot ng Company. All rights 20. (Build 30) (boldwp2	reserved. Terms of Use	

Installation Instructions

Boeing Service Bulletin – Modification to Allow for Routine Use of SHM Solution (June 2016)

BOEING SERVICE BULLETIN 737-57-1309

DO A DETAILED INSPECTION OR COMPARATIVE VACUUM MONITORING (CVM) INSPECTION OF THE CENTER WING BOX FRONT SPAR SHEAR FITTINGS FOR ANY CRACKS. IF ANY CRACK IS FOUND, REMOVE THE DAMAGED SHEAR FITTING, MAKE SURE THERE IS NO CRACKING IN THE UPPER PANEL AND INSTALL A NEW SHEAR FITTING AS GIVEN IN THIS SERVICE BULLETIN.

AT EACH SHEAR FITTING, IF NO CRACKING IS FOUND IT IS OPTIONAL TO ACCOMPLISH THE PREVENTIVE MODIFICATION BY REPLACING THE SHEAR FITTINGS.

		Commercial	
Ø BOE	ING	Airplanes	737
		:	Service Bulletin
Number: Original Issue: Revision 1: ATA System:	737-57-1309 January 28, 2011 June 27, 2016 5714	Revis	ion Transmittal Sheet
SUBJECT:	WINGS - Center Wing Modification	g Box - Front Spar Shear Fitting - Inspe	ction, Repair and Preventive
This revision include	es all pages of the ser	vice bulletin.	
	ORMATION RELATE	D TO THIS REVISION	
COMPLIANCE INF			
	ion on airplanes on w	hich Original Issue was previously do	ne:
	ion on airplanes on w	hich Original Issue was previously do	ne:
Effects of this Revis	·	hich Original Issue was previously do	ne:

YSTEM

CVM for Rotorcraft - SHM of Cracks Emanating from Fastener and Nutplate Holes

Local (Hot Spot) Monitoring Application: S-92 Frame Gusset

- Failure History cracking begins at nutplate holes on inner cap; grow outward to edge of frame
- Thickness/materials are common for frame/beam caps – good extrapolation to other high-interest locations for rotorcraft SHM

Frame Gusset

Validation Test Set-Up

CVM Application – WiFi Antenna Installation Structure

Multiple aircraft types, multiple airlines

CVM Sensor Design

CVM sensors used to rapidly complete frequent, repeat HFEC/LFEC inspections required on internal structure hidden behind interior panels.

FAA Issue Paper – WiFi Specific and Generic (Nov 2019, 21)

WiFi Specific IP

For use in conjunction with Memo No. AIR600-18-AIR-6C0-DM119 Electronic means of capturing the below data can be used in lieu of this grid. Remove Grid Before Transmitting Externally

ISSUE PAPER

PROJECT:	Delta Engineering ODA	ITEM: A-1
	Boeing 737-600/-700/-700C/-800/- 900/-900ER	STAGE: 2
	Project No. ODA-2499-01	
REG. REF.:	§ 21.50, § 25.571, §25.1529,	DATE: 11/21/19
	Appendix H,	
		ISSUE STATUS: OPEN
NATIONAL	AC 25.571-1D	
POLICY REF:		BRANCH ACTION: AIR-7H1,
		AIR-7H2, AIR-675, AEG
SUBJECT:	Comparative Vacuum Monitoring	
	(CVM) for Damage Detection in	COMPLIANCE TARGET: Pre-
	Structure of Antenna Installations	STC
ſ		
	Mathad of Comm	lianaa

Method of Compliance

STATEMENT OF ISSUE:

Delta Engineering seeks a supplemental type certificate (STC) to install a Structural Health Monitoring (SHM) system—Comparative Vacuum Monitoring (CVM)—on a Boeing 737 model airplane. An SHM system such as CVM, evaluates the integrity of certain structure by acquiring data from on-board sensors that interface with handheld carry on electronic device. This approach for detecting structural damage (e.g., fatigue cracking) eliminates the need for an inspector to physically access and assess structure. Over the past 35 years, industry has used nondestructive inspection (NDI) techniques, such as visual and eddy current inspections, to detect structural damage and ensure the continued airworthiness of transport category airplanes. Industry incorporates procedures and timing for implementing NDI techniques & in the Instructions for Continued Airworthiness (ICA) manuals as part of their data for showing compliance with Title 14, Code of Federal Regulations (14 CFR) 25.571 and 25.1529.

Physical accessibility of structure has been an important aspect of inspection programs used to ensure the continued operational safety of transport airplanes. The FAA has not previously approved an SHM system as an inspection technique for compliance with §§ 25.571 and 25.1529. The current industry practice and guidance used to validate conventional NDI techniques may not be adequate for an SHM system. The purpose of this issue paper is to ensure the proposed SHM system can adequately & reliably detect damage for compliance with §§ 25.571 and 25.1529.

Project:	Delta Engineering ODA	Item: A-1
•	Boeing 737-600/-700/-700C/-800/-900/-900ER	Stage: 2
	Project No. ODA-2499-01	Date: 11/21/19

This issue paper specifies key elements and criteria the applicant must address to demonstrate that their proposed SHM system adequately replaces existing ICA that are necessary for compliance with §§ 25.1529 and 25.571. The primary intent of §§ 25.1529 and 25.571 is to ensure an airplane's structural maintenance program will prevent catastrophic failure due to fatigue damage over the operational life of the airplane. The elements and criteria identified in this IP (FAA Position) will guide the applicant's comprehensive assessment of the functionality, reliability, durability, and maintainability of the proposed SHM system.

Generic SHM Certification IP

	ISSUE PA	PER
PROJECT:	[Applicant]	ITEM: A-#
	Model [make & model] Project No. [project number]	STAGE:
REG. REF.:	14 CFR § 21.50, § 25.571,	DATE:
NATIONAL	§25.1529, Appendix H	ISSUE STATUS: Open
POLICY REF:	AC 25.571-1D	
SUBJECT:	Qualification of a Structural Health Monitoring System for Detection	OFFICE ACTION: AIR-621, AED
	of Damage in Structure	COMPLIANCE TARGET:

STATEMENT OF ISSUE:

The applicant proposes to install a Structural Health Monitoring (SHM) system on a model <Enter TCDS Model(s)> airplane. An SHM system evaluates the integrity of structure by acquiring and analyzing data from on-board sensors that interface with an electronic device (either on-board or off-board) that processes the data and provides an indication of the health of structure in terms of the existence of damage (e.g., fatigue damage). A SHM technology capable of reliably detecting damage of a specific nature and size over a specific line, area or volume is a candidate alternative to conventional non-destructive inspections (NDI) such as visual, eddy current, ultrasonic and Xray inspections methods. This approach for detecting structural damage may supplement or eliminate the need for an inspector to physically access and assess structure. Over the past 30 plus years, industry has relied on accessing structure to assess its overall integrity and, as part of that assessment, perform NDI such as visual and eddy current inspections, to detect structural damage. The current industry practice and guidance used to validate conventional NDI techniques may not be adequate as a method of compliance with title 14, Code of Federal Regulations (14 CFR) 25.571 and 25.1529 for an SHM system. Therefore, this issue paper is necessary to establish an acceptable method of compliance.

FAA Issue Paper- Qualification of a SHM System for Detection of Damage in Structure (Nov 2021)

Purpose

- Address type certification and type validation processes issues of particular interest to the FAA, including aspects of the design or proposed methods of compliance (MoC)
- Uniform certification approach between applicants valuable reference for future type certification programs & for development of regulatory changes; precedent-setting technical decisions & the rationales employed

<u>Content</u>

- Key elements to be addressed compliance demonstration with §§ 25.571 and 25.1529 to assess the functionality & performance of the proposed SHM system
 - Sensor installation and durability/repeatability and reliability
 - Means for determining damage detection capability in all operating environments
 - In-service experience
 - Maintenance and continued airworthiness needs

Certification Status- FAA Approved (STC granted Mar 2022)

Federal Aviation Administration Supplemental Type Certificate Number: ST04103NY Description of Type Design Change: Installation of Structural Monitoring Systems Comparative Vacuum

Monitor (CVM) Sensors in accordance with Delta Engineering Master Data List 0106-10998-2499 Revision A dated Mar. 2, 2022 or later FAA approved revisions to Delta Engineering Master Data List previously listed. The Instructions for Continued Airworthiness as listed on the Master Data List is required with this installation.

<u>Generic FAA Issue Paper (IP) on SHM represents the first formal set of guidelines from</u> the FAA for certification of Structural Health Monitoring (SHM) systems in routine maintenance activities. The IP guides production of SHM performance data to ensure that the proposed SHM system can adequately and reliably detect damage for compliance.

March 3, 2022- FAA Issued first ever STC for SHM, to Delta Engineering (licensed to SMS) for use on Go-Go (Intelsat) Wi-Fi antenna inspection requirements, for the B737 aircraft. The generic Issue Paper and the STC approval are the basis for obtaining additional approvals in the near future.

CVM Application – Aft Pressure Bulkhead Fitting

CVM Sensors on B737 Aft Pressure Bulkhead

STRUCTURAL MONITORING SYSTEMS

CVM Performance Tests – Sensitivity, Durability, Reliability

CVM Applications – Focused Assessment of Single Platform (737NG)

- Frame Fitting and Fail-Safe Strap at STA 663.75 -Airworthiness Directive 2021-09-06
- Bearstrap at Forward Galley Door Cutout Service Bulletin 737-53A1407 (also 737 MAX)
- Inner Chord at BS727/S-18A Service Bulletin 737-53A1402
- Crown Skin Chem-Mill Step Cracking Airworthiness Directive 2017-19-26 (SB 737-53A1232)
- Stringer Repairs and Post-Repair Inspections Service Bulletin 737-53A1397
- Aft Pressure Bulkhead Service Bulletins 737-53A1251 & 737-53A1403
- Fuselage Skin Cracking at S-14R Service Bulletins 737-53-1399

Aerospace Industry Steering Committee on Structural Health Monitoring (AISC SHM)

ARP – Guidelines for SHM Implementation

- The mission of the AISC-SHM is to provide an approach for standardizing integration and certification requirements for SHM of aerospace structures, which will include system maturation, maintenance, validation and introduction into accepted maintenance practices.
- The focus is the <u>development of cross-industry</u> <u>guidebooks</u> describing approaches to safely deploy SHM systems on fixed wing aircraft and rotorcraft and guidelines for the proper validation and certification of SHM solutions.
- SAE International Aerospace Recommended Practices document: ARP6461 "Guidelines on the Implementation of Structural Health Monitoring on Fixed Wing Aircraft" (Sept 2013)
- SAE International Aerospace Recommended Practices document: ARP6821 "Guidance for Assessing the Damage Detection Capability of SHM Systems" (in process)

STRUCTURAL

SAE Aerospace		AEROSPACE RECOMMENDED PRACTICE		SAE ARP6461			
				Issued Proposed Draft 2012-11-28			
	Guidelines for Implen	nentation of Structural Health M	lonitoring	on Fixed Wing Aircra	ft		
		RATIONALE					
stakeholder: Suppliers ar of solution t	Regulatory Agencies, e crucial to the process of	y that spans multiple engineering Airlines, Original Equipment Ma f certifying viable SHM solutions. T practices for reaching those solut TABLE OF CONTENTS	inufacturer 'hus a com ions, are n	s (OEM), Academia mon language (definitio	and Equipment		
	ROOPE						
1. 1.1							
1.2	Purpose						
1.3	An Overview of This Document						
1.3.1 1.3.2	General Approach						
1.3.2	Evolution of Aircraft Products Including Structures and SHM Systems						
1.3.4	Requirements, V&V, a	and Certification					
- -	DEFEDENCES						
2. 2.1		s					
2.1.1		s					
2.1.2	FAA Publications				(
2.1.3							
2.1.4 2.1.5							
2.1.5							
2.1.7		lications					
2.1.8							
2.2							
2.3 2.4							
3.		AIRCRAFT STRUCTURES DESIG					
3.1		nciples					
		aintenance Principles nt					
3.2		terrent Devices Device Devices	s"				
3.2 3.2.1 3.2.2	FAA AC 121-22 "Main	itenance Review Board Procedures	Other Instructions for Continued Airworthiness				
3.2 3.2.1	FAA AC 121-22 "Main Other Instructions for	Continued Airworthiness			18		

Other Developments to Aid SHM Utilization

- Multiple education initiatives completed as part of SHM application programs
- Inclusion of SHM in MSG3
- Discussions & coordination within other key industry groups:
 - > Maint Programs Industry Group (MPIG)
 - > Int'l Maint Review Board Policy Board (IMRBPB)
 - IATA Engineering and Maint Group (EMG)
- Maturation of SHM is supported as part of a larger effort in overall Aircraft Health Monitoring (AHM) activities
- SHM training initiatives underway (EASA & FAA)
- Quantitative performance analysis methods evolved (POD)
 - Statistics analysis software established by Boeing (Basu) and Iowa State Univ (Meeker)
- Multiple OEMS & airlines are carefully stepping through SHM application efforts

Conclusions on Routine Use of SHM Solutions

- Overall, there is a strong interest in SHM multitude of applications covering all aircraft structural, engine, and systems areas
- Recent advances in health monitoring have produced viable SHM systems for on-board aircraft inspections
- Sensors must be low-profile, easily mountable, durable, reliable & fail-safe
- General lab performance (sensitivity/POD) & flight test data is accumulating
- Reliability/POD assessments will depend on sensor system, flaw type/orientation and application – consider all variables that affect performance
- Performance Database testing levels expected to be higher until sufficient database is obtained
- AMOC for SBs and ADs or STCs safety driven use is achieved in concert with OEMS & regulatory agencies; certification & regulatory framework has evolved to streamline applications for use

Developments to Facilitate Routine Use of SHM on Commercial Aircraft

Questions ??

STRUCTURAL MONITORING SYSTEMS

CANADA

Trevor Lynch-Staunton Chief Technical Officer #100-966 Crowley Ave. Kelowna, BC Canada Tel: +1 250 763 1088

USA

Rich Poutier Exec VP Business Development r.poutier@smsystems.com.au Tel: +1 310 292 5474

AUSTRALIA

Sam Wright Company Secretary Suite 39, 1 Freshwater Parade Claremont WA 6010 Australia Tel: +61 8 6364 0899

2022 Airlines for America Nondestructive Testing Forum

Developments to Facilitate Routine Use of SHM on Commercial Aircraft

Dennis Roach Trevor Lynch-Staunton Structural Monitoring Systems Kelowna, BC Canada <u>dpmroach@outlook.com</u>

Reliable Structural Health Monitoring (SHM) systems can automatically process data, assess structural condition and signal the need for human intervention. The use of in-situ sensors, coupled with remote interrogation, can be employed to overcome a myriad of inspection impediments stemming from accessibility limitations, complex geometries, and the location and depth of hidden damage. While ad-hoc efforts to introduce SHM into routine aircraft maintenance practices are valuable in leading the way for more widespread SHM use, recent airline requests to deploy SHM indicated a significant need for formal SHM technology validation and certification processes to support the adoption of SHM solutions.

This paper presents recent efforts by regulators, OEMs, airlines and SHM developers to move SHM into routine use for aircraft maintenance. An array of SHM integration programs have addressed formal SHM technology validation and certification issues so that the full spectrum of concerns, including design, performance, deployment, and continued airworthiness were appropriately considered. The activities conducted in these programs demonstrated the feasibility of SHM usage and supported the development of industry guidelines and advisory materials to facilitate widespread adoption of SHM across the commercial aviation industry. The FAA has directed a number of SHM validation programs that have produced quantitative assessments for sensitivity, durability, and repeatability. Several aircraft manufacturers (OEMs) have embraced SHM with some even incorporating it into their NDT Manuals and issuing Service Bulletins that allow for SHM use. In addition, the FAA recently published an Issue Paper that provides essential guidelines for SHM system designers and procedures for assessing the performance of SHM systems. Finally, the demands by industry for standardized procedures and implementation of SHM technologies prompted the establishment of the Aerospace Industry Steering Committee for SHM (AISC-SHM). The AISC-SHM has evolved a number of documents to standardize approaches for integrating and certifying SHM use on aerospace structures. All of these efforts are allowing SHM solutions to quickly and properly support maintenance activities while establishing policies and guidance to ensure the safe, uniform and comprehensive certification of SHM systems.

