FAA Structural Health Monitoring SHM

Federal Aviation Administration

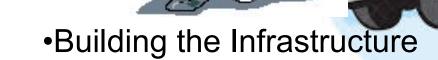
Presented to: Airlines for America NDT Forum

By: Paul Swindell

Date: 19 September 2018

Outline

- Past
- Present
- Future
- Conclusion


Paving the Path for SHM Innovation

FAA

•SHM

programs &

guidance

Federal Aviation Administration

•End User

Past

- Why does the FAA care about SHM?
- Transport Standards Branch (Transport Aircraft Directorate)
 - Certification Issues
- FY11 with AANC
- Started with survey, review of SHM capabilities, gap analysis
- Perform a mock certification

📥 DELTA



Sensor Pad

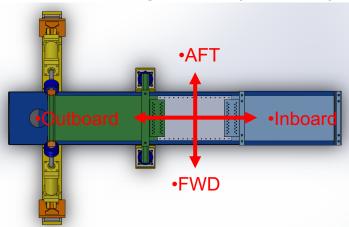
Structure

Past-Emerging Technologies

- Objective: Partner with the AANC, Delta Air Lines, SMS/AEM and Boeing to conduct trial SHM certification & integration activity
- Application: Boeing737 NG Wing Box fitting cracking problem as application Boeing issued a service bulletin as a result of cracking after 21k cycles
- Accomplishments:
 - Install on Delta's 737-700 Fleet going thru Atlanta for 5 ½ day checks (6k cycles)
 - 7 aircraft completed in Feb/March 2014
 - Delta collected CVM data every 90 days as well as performing required NDI inspection
 - Boeing approved CVM Dec 2015 use –updated SB June 2016
 - Review CVM project against SAE guidelines and determine what has been validated
 - Assess FAA rules and determine if adequate for SHM use
- Outcome:
 - Ensure safe implementation of emerging technologies
 - Develop FAA webinar for FAA ACO engineers
 - Delta/Boeing investigating further SHM numerous platforms

Federal Aviation Administration

Crac


SAE AISCSHM Committee

- Develop standards for SHM for aviation community
- ARP6461 "Guidelines for Implementation of Structural Health Monitoring on Fixed Wing Aircraft" published Sept 2013
- Probability of Detection area of concern
- Reliability workshop April 2015 to determine path forward
- Developed 2 POD methodologies for SHM
- ARP being developed for POD
- Planning a second workshop in 2019
 - Develop the test program for validation of the methodologies
 - Develop useable data for public use

Present-Emerging Technologies

- To provide SHM capability to the TC Labs:
 - Emerging Technologies (Al-Li Panels)
 - Wing Box (ABST)

To assess SHM capabilities and collect data

Full-Scale Aircraft Structural Test Evaluation and Research (FASTER)

•History and Background:

Established: Dec. 1998 through partnership with Boeing

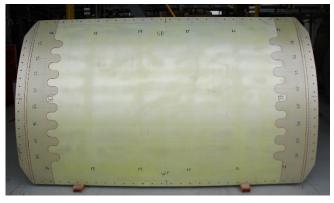
•Applies Major Modes of Loading to Fuselage Panels:

–Pressure

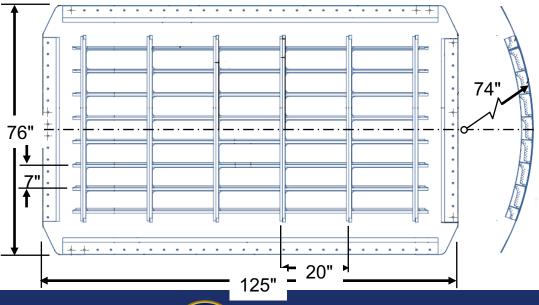
-Hoop

–Axial

-Shear



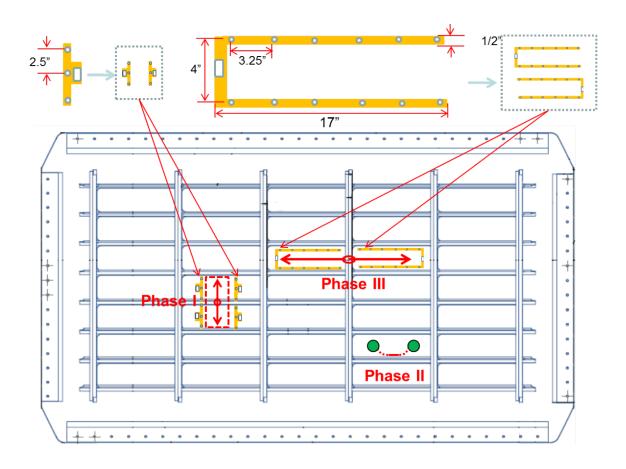
Baseline Panel Design



Internal View

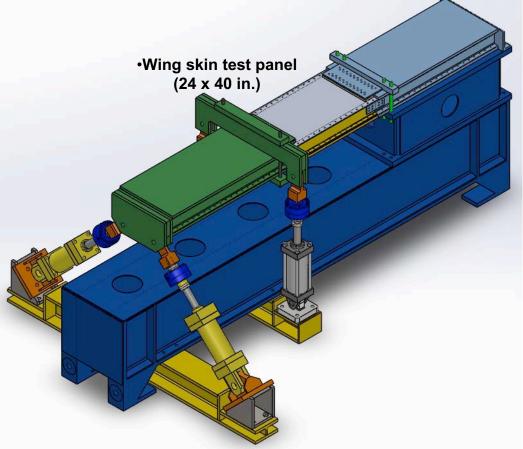
•External View

Panel Length	125 inch		
Panel Width	76 inch		
Panel Radius	74 inch		
No. of Frames	6		
No. of Stringers	8		
Frame Spacing	20 inch		
Stringer Spacing	7.0 inch		
Skin Thickness	0.055 inch		



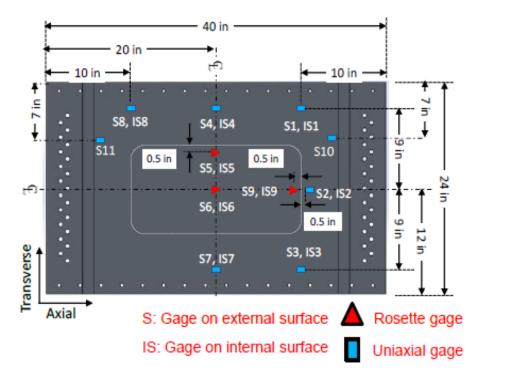
Test Matrix – Panels

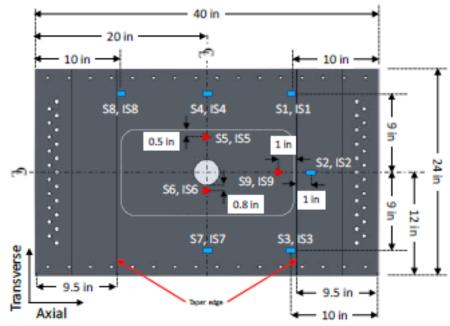
		1	2	3	4	5	6	7
		Baseline	Advanced Density Reduction	Advanced Materials	Advanced Materials, FSW	FSW and Bonded Stringers	Baseline MSD	Advanced Density Reduction MSD
Component	Skin	2524-T3 sheet	2060 - T8 Al-Li sheet	2029-T3 sheet	2029-T3 sheet, FSW	2060 AI-Li sheet, FSW joint and bonded FML straps	2524-T3 sheet	2060 - T8 Al-Li sheet
	Stringer	7150 extrusions, riveted	2055 or 2099 Al-Li extrusions, riveted	2055 or 2099 Al-Li extrusions, riveted	2055 or 2099 Al-Li extrusions, FSW	2055 or 2099 Al-Li extrusions, bonded	7150 extrusions, riveted	2055 or 2099 Al-Li extrusions, riveted
	Frame	7075-T62 - shear tied, extruded, riveted	2055 or 2099 Al-Li integral extrusions, riveted	2055 or 2099 Al-Li integral extrusions, riveted	2055 or 2099 Al-Li integral extrusions, FSW	2055 or 2099 Al-Li integral extrusions, riveted	7075-T62 - shear tied, extruded, riveted	2055 or 2099 Al-Li integral extrusions, riveted



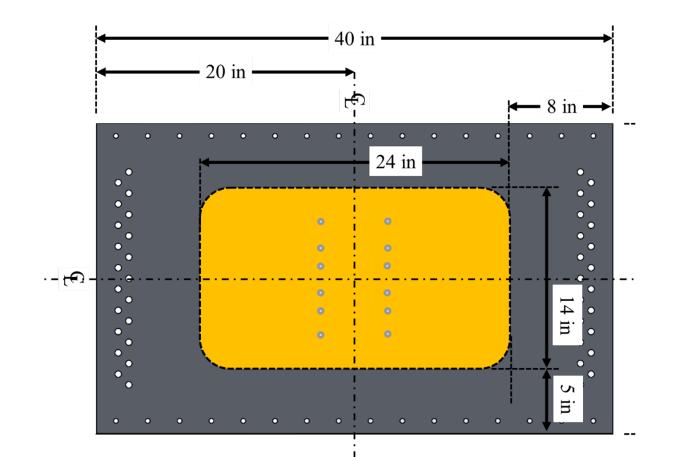
SHM INSTALLED ON PANEL 1

Airframe Beam Structural Test (ABST) Fixture




ABST Test Program

- Phase 1: Baseline mechanical and fatigue behavior of
- composite panels (pristine and open hole)
- Phase 2: Bonded Repair Size Limits
- Phase 3 (proposed): Fatigue and DT performance of bonded repairs intentional made deficient to encouraging damage growth
 - Calibrate analysis methods
 - Assess NDI and SHM to detect and monitor damage growth


Phase 1: Panels 1 and 2

SHM Sensor Layout-PZT

Future: Reliability

- Developed 2 methodologies for POD for SHM
- Data from FASTER and ABST tests may be of use to this effort
- Working with NASA to develop a model of the FASTER test fixture with SHM
- Working with SAE to develop industry std

Conclusion

- Boeing/Delta/AANC met in January 2018 in Seattle to discuss future SHM applications: SB - AD.
- SHM: "in situ" NDI. Equal or better. No new guidance needed. Evaluate on case by case basis.
- Dual inspections still required when SHM replaces NDI

Questions

- Paul.Swindell@faa.gov
- William J Hughes Technical Center
- Atlantic City, NJ
- 609-485-8973

